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ABSTRACT

The detection of an optical image in the presence of uniform back-

ground light is based on a likelihood ratio formed of the numbers of

photoelectrons emitted from small elements of a photoelectric surface onto

of the threshold detector and that of a detector basing its decisions on the

which the ~~age is focused.
\

has unit qua'r.1tum efficiency,
\

detector of the image-forming

When diffraction is negligible and the surface
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this detect.o~ is equipollent with the optimum

light. Its performance is compared with that A
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total number of photoelectrons from a finite area of the image. The

illuminance of the image is postulated to have a Gaussian spatial distri­

bution. All three detectors exhibit nearly the same reliability.
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1. The Ideal Photoelectric Detector

An optical detector is to decide whether a certain luminous object

is present or not in an object plane at a distance R from its aperture.

The aperture contains a lens focusing the object plane onto an image plane

I at distance R
l

behind it. The image plane consists of a photoelectrically

emissive surface divided like a mosaic into a large number of small areas

.·<o'Af'''''·8rrd".tih·e·''numbers'.ni'of.~phot;eeJ::ec~r.en6'':emd,t;ted .f,.r,om.,these.dur.ing .an

observation interval of durationT constitute the primary data on which is

based the decision about the presence or absence of the object sought. In

general, background light also enters the aperture, and an observer is to

choose between two hypotheses: (H
O

) only background light is present, and

(H
1

) besides the background light, light from the object is also incident

on the aperture.

Let the illuminance at point ~ of the image plane caused by back-

ground light in the frequency interval v to v +dv be JO(~,v)dv, and let

the illuminance under hypothesis H
1

be

(1)

where J (x,v)dv is the illuminance produced by the light from the object. s ""

sought (the 'signal'). Let n(v) be the quantum efficiency of the photo-

electric surface at frequency v. We assume that the duration T of the

observation interval is so much greater than the reciprocal bandwidth W-l

of the object light that the numbers ni of photoelectrons from the various

elements of the image p1an~ are statistically independent Poisson-distributed
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random variables with mean values

nik ~ !!(ni Iuk) = Tf f ~(v) J k ()S, V)d
2

)S dv/hv

Ai 0

,,; ~(~i) oA
l

, k = 0, 1, (2)

.
,."·~whe're·.,,Ai,·"'een'te,Fed,...,a,t'~#.S:r""4:s"j.the,,i'7.th~eleJllen t~.of, ~the."image" p,lane I, on which

d2~ is an element of integration, h is Planck's constant, and

'\/)S) ~ T J:(V) V)S,v)dv/hv.

o .
(3)

prdinarily MO(~) is constant over the part of the surface I where the ob-

ject is imaged. When the image sought is quasimonochromatic, the incident

light will have been filtered to remove as much as possible of the background

outside the frequency band of the image.

The optimum strategy' for deciding between the two hypotheses com­

pares the statistic[l]

L
i

(4)

with, a decision level go; the system will choose HI if g > go and H
O

if

g ~ gO. This statistic differs from the logarithm of the likelihood ratio

by a constant,

g- L
i
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where
'.

(6)

is the total average number of photoelectrons ejected by the light from

the object.

false-alarm probability

(7)

and the detection probability

(8)

Here PO(g) and PI(g) are the cumulative distributions of the statistic g

under the two hypotheses. When hypothesis H
O

has prior probability ~ and

HI prior probability I - ~, the average probability of error is

(9)

and it is minimum when the decision level go is[2]

(10)

Under the Neyman-Pearson criterion gais set to yield' a pre-assigned
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false-alarm probability QO.

The distribution functions PO(g) and Pl(g) can be derived from

the moment-generating functions (m.g.f. IS) hOes) and hI (s), which are the

Laplace transforms of the probability density functions (p.d.f. IS) of g

and are given in the limit 6A ~ 0 by[l]
I

the integral being taken over the entire image plane I. Because of (5),

or as can be shown directly,

(12)

If M (x) =0 outside a finite area I' of the image plane, the optimum. s ~

detection statistic involves only emissions within that area, and there

is a finite probability

that no photoelectrons will be emitted there at all. The p.d.f.'s of g

then have a delta-function at g = O.

If both MO(~) and Ms(~) are constant over I', the statistic

-1 .
g[tn(Ml/MO)] has only integral values with a Poisson distribution under

both hypotheses. When the Neyman-Pearson criterion is being used, a
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desired false-alarm probability is set, and randomization may be necessary.

The detection probability versus the mean total number N of photoelectrons
s

[3]
ejected by the object light has been calculated and graphed elsewhere.

In this paper we shall study the evaluation of the error probabil-

ities and compare the performance of the optimum detector with two other,

simpler detectors. One is the threshold detector, which utilizes a

normalized form of the statistic

g' = ~
i

n
i

M (x.)/MO(x.).s ~1 ~1

The other detector simply counts all the electrons emitted from a finite

area of the image plane.

2. Relation to the Optimum Receiver

The photoelectric detector just described represents a particular

way of processing the light field at the aperture A of the optical system

in order to choose between the two hypotheses. It should be compared with

the optimum means of processing that field. We suppose that the object

plane radiates incoherent, quasimonochromatic light uniformly distributed

in a frequency band of width W about the central frequency v, W « v.

The total radiance at point ~ of. the object plane under hypothesis HI is

B(~); under HO it is zero. Under both hypotheses thermal background

light of effective absolute temperature 8fis also incident on the aperture.

It is broadly distributed in direction and possesses a Planck distribution

in frequency.
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The field at the aperture-is cdhsidered classically as a scalar

spatio-temporal complex Gaussian random process. In order to formulate

the optimum decision strategy this field is broken up into spatial modes

much as a purely temporal signal is treated by the Karhunen-Loeve expan­

sion.[4,5] The fraction h of the object light in the £-th spatial mode
r,

is the r,-th eigenvalue of the integral equation

2
- rl)n (r1)d r l ,

~ p ~ ~

~

(14)

where A is the area of the aperture A and the kernel 8(£) is the spatial

coherence function of the object light at the aperture. It is the spatial

Fourier transform of the radiance distribution B(~) of the object,

f B(£)exp(ik£ . !::/R)d
2
£;

o

(15)

where k = 2n/A = 2nc/v is the propagation constant, c = velocity of light,

A = wavelength. In (14)

Br - B(Q) = f B(£)d
2
£

o

is the total radiant power of the object.

(16)

The coefficient of the mode function n (r) in this expansion is
r,~

a random function of time that is in turn expanded in temporal modes that

are eigenfunctions of the temporal coherence function of the object light.

The combination of a spatial and a temporal mode is called a spatio-tempora1

mode. When, as assumed here, the object light has a rectangular spectral
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density of width W, and the product 'lIT 'of that bandwidth and the obser-

vation time T is large, WT » 1, there are approximately WT temporal

modes each containing a fraction (WT)-l of the object light; the rest

are negligible. [4]

Under the assumption that WT » 1, quantum detection theory shows

that the optimum strategy forms the statistic[6]

U = ~
p

[n R,n(l + h jVs/'A'WT)] -.A's'
E. .£

(17)

where n is the total number of photons in the WT significant temporal
p
~

components of the spatial mode ~, ~ is the mean total number of photons

received at A from the object, and

Jf'" = [exp(hv/KY) - 1]-1 (18)

h .A' + JVWT,
£ s

is the mean number of thermal photons per spatio-tempora1 mode of the

aperture field, as given by the Planck law; K is Boltzmann's constant.

The number n has a Poisson distribution with mean values
p

~ (n£ IHO) =.A'WT,

~(n£.IH1) =

(19)

under the two hypotheses. Hypothesis H1 is chosen if the statistic U ex­

ceeds a decision level UO'.

-8-



When the aperture A is rectflngl11ar, a x a , with a and a much
x y x y

greater than the width of the kernel B(!) of (14), the eigenvalues hare
£

approximately

h - 0 0 B(p 0 ,p 0 )/BT, ££ xy xx yy

o = ARIa, 0 = ARIa •x x y y
(20)

The resolution lengths 0 and 0 in the object plane are much smaller thanx y

distances over which the radiance B(~) changes significantly. If the

object is focused on the image plane, as in the detector of §1, the image

is not visibly distorted by diffraction at the aperture, and if the

imaging is otherwise perfect, the total illuminance it produces at point

~ of the image plane I is

(21)

for some constant C.

We can then write the statistic U as

if we put

U = L
£

n
E

,
M (x ) ]s",£

+ , ­MO
J1'

s
(22)

(23)

I

M (x) =s ~
JV J(x) [!J. (X)d2x]-~s s ~ s ~ ~

I

-9-
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where

0' =
y

(25)

are the resolution lengths in the image plane.

Comparing (22) with (4) we see that the optimum detection strategy

handles the numbers n of photons in the spatial modes in much the same
E

way as the photoelectric detector handles the numbers of electrons ejected

from the image plane. If we divided the image plane into insulated areas
, ,

15 x.o, and if the surface had unit quantum efficiency, the two detectorsx y

would be nearly the same.

The moment-generating functions of the statistic U are, under the

two hypotheses,

L:
p

[1 - (1 + h JV VVWT) -s] Ir. s I'
(26)

(27)

The number of degrees of freedom in the object is conveniently defined by[5]

M = (~>~2r = AA I(AR)2 = A 10 15 (28)o' o x y

where A is the effective area of the object, given by
0
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(29)

When M » 1, the m.g.f. in (26) is approximately

+ ~ B~£)]·-sld2£/A l'
..NM\IT B 0

(30)

This result does not require the aperture to be rectangular, but follows

from the two-dimensional counterpart of Theorem 1 of Chapter 5 of Grenander

and Szego;[7] for any function f(x) analytic at x = 0,

f(h ) ~ Mjf(B(U)/MB)d2U/A ,£ ~ ~ 0

o

M ». 1, (31)

as can be shown by expanding f(h ) in powers of h and using
p p
~

(32)

(m)
where 8 (E1,E2) is the m-th iterated kernel of (14) and is proportional

to the Fourier transfo~ of '[B(~)]m when M »1. The condition

M = A 10 0 »1 means that the image is little distorted by diffraction,
o x y .

and if we assume perfect imaging we ca~ use (21), (23), and (24) to write

the m.g.f.'s as

~(s)

(33)
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Comparing (33) and (11) we see that the optimum detection strategy yields

the same performance as the optimum photoelectric detector when the

quantum efficiency of the surface is n = lover the spectral band of the

object light and diffraction by the aperture is negligible.

3. Performance of the Ideal Photoelectric Detector

a) Background Light Absent

When there is no background light, MO = 0, no photoelectrons will

be emitted under hypothesis HO• Then under the Neyman-Pearson criterion

a randomized strategy is required t with hypothesis HI chosen whenever any

photoelectrons at all are observed; when none is emitted t HI is chosen

with probability QO and HO with probability 1 - QO' where QO is the pre­

assigned false-alarm probability. The probability of detection is then

(34)

where as in (6) N is the mean number of photoelectrons ejected by lights

from the object.

When as in a binary communication system the Bayes criterion is

adopted, with equal error costs and with prior probabilities sand (1 - s)

for hypotheses HO and HI' respectively, hypothesis HI is chosen whenever

any photoelectrons at all are observed. When none is emitted, HI is chosen

provided the likelihood ratio exp(-Ns ) exceeds the ratio A
O

= ~/(l - s);

otherwise HO is chosen. The average probability of error is then

-12-



P. = min[~,(l - ~) exp (-N »).
e s

When in particular the two hypotheses are equally likely,

(35)

P
e

(36)

These error probabilities are independent of the distribution of image

illuminance.

b) Background Light Present

The performance of the three detectors we are concerned with,

the ideal photoelectric detector, the threshold detector, and the simple

counter, will be assessed under the postulate that the object creates an

image having the Gaussian form

M (x)s ~

2 2= M (0) exp (-~ /2E )s ~ .- (37)

with width E. This might be the image of a circular nebula or, more im-

portant, of a point source whose light has passed through a turbulent

medium. When the turbulence can be pictured as occurring at one or a

number of planes or 'phase screens', each introducing into the light a

random phase shift represented by a two-dimensional Gaussian random

process, the spatial coherence function S(r) at the aperture is simply

multiplied by a factor per) that depends on the structure functions of

the random phase shifts.[8) When these are quadratic functions of dis-

tance, or when there are many screens, the factor p(~) has approximately

-13-



a Gaussian form,

2 2
exp(-r /4L ),

where L is a mean turbulence length that is the smaller, the more severe

the turbulence. The image is the scaled Fourier transform of p(r) S(r),

and for a point source has the form given by (37) with the squared

effective width

If the observation time T is much longer than the characteristic fluctuation

time of the random phase shifts, the distributions of the numbers of emitted

photoelectrons will still be of the Poisson. variety. We can therefore use

the m.g.f. 's given by (11), introducing the signal-to-noise ratio n2 and

the total effective number of background photoelectrons NO through

(38)

where n is the average quantum efficiency over the spectral band of width

W, T is the observation time, N is the mean total number of photoelectronss

ejected by the image, and Jfis the mean number of background photons per

mode, given by (18). We obtain from (11) the m.g.f. 's

-14-



~ (s) = exp { -NO!!ll + n
2

exp (-l /n
2
)]k

I

. ( + D2
x (1 - [1 exp

(1 + n2y)-Sly-ldyl, k = 0, I,

(39)

dy,

after a change of integration variables and use of the circular symmetry

of the integrand. The mean value and variance of the statistic g under

each hypothesis can then be obtained by expanding the m.g.f. 's about s 0,

J
'l

. 2 2-1= NO (1 + k D y)£n(l + D y)y

o

Var[gl~] = NO Jl(1 + k n2Y)'n2 (1 + n2y)y-1 dy, k 0, 1.

o (40)

It is not generally possible to calculate the p.d.f. 's of the

detection statistic g in closed form from m.g.f. 's such as those in (11)

and (39). The logarithmic likelihood ratio g has what is known as an

infinitely divisible distribution, but although there is a vast mathe-

matical literature about such distributions, mostly concerned with limit

theorems,[9,1~] we have been unable to find there any specific advice

about calculating the probability density functions. In a previous

paper[l] a Gaussian approximation was used; it is valid only when

NO » 1 and D2 «1. Farrell[ll] recommended approximating the proba­

bility density function (p.d.f.) of the statistic g by a gamma distribution

whose mean and variance match those of the true distribution as given by

-15- .



(40).

As the m.g.f .. is the Laplace transform of the p.d.f., it is natural

to try evaluating the inverse Laplace transforms of hO(s) and hI (s) by

the sadd1epoint method. Daniels applied this method to finding the p.d.f.

of the sample-mean statistic. [12] We have used it to obtain the cumulative

distributions directly by evaluating the contour integral

gs
[1 - ~(s)]e ds/2nis,

+ i oo

a -
={

i oo

a > 0, k = 0, 1, (41)

which can also be written

-{ + ioo

1 - Pk(g)
. gs

ds/2nis,~(s)e

a - ilX>

a < 0, k = 0, 1, (42)

by displacing the contour to the left of the origin. By an elaboration

of the sadd1epoint method, Rice produced an asymptotic expansion that is

most suitable for numerical evaluation.[13,14]

The sadd1epoint occurs at the values of s at which the phase

(43)

of the integrand of (42) is stationary; it is the solution of the equation

~~(s) = h~(s)/~(s) + g = 0, (44)
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which from (39) yields

Jl 2 k-s 2
g = NO (1 + D y) tn (1 + D y)dy/y,

o

s = sk' k = 0, 1, (45)

where the primes denote differention with respect to s. For the ideal

photoelectric detector, by virtue of (12),

(46) .

When g > ~(gl~), sk < 0 and (42) is used; when g < ~(gl~), sk > 0 and

(41) is used. Rice's asymptotic expansion requires the values of the deri-

vatives of the phase at the saddlepoint,

m 2
tn (1 + D y)dy/y,

m ~ 2, k = 0, 1; (47)

these were evaluated by ~umerical integration.

In Fig. 1 we have plotted the cumulative distributions of the

statistic g under hypotheses HO and HI for a typical set of values of Ns

and NO' as calculated by the saddlepoint method and from the Gaussian

and gamma-function approximations. The latt.er two approximations are

least accurate in the tails of the distributions, and for small false-alarm

probability QO there may he a serious error in the decision level go if

-17-



either is used.

Under the Neyman-Pearson criterion the false-alarm probability

Q
o

is pre-assigned, and it is necessary to determine the decision level

go and the associated saddlepoint sO' An iterative search method was

used that took advantage of the fact that as So becomes more negative, go

increases and Q
O

decreases. The behavior of the saddlepoint So as a

function of the signal-to-noise ratio D2 is depicted in Fig. 2 for a

typical case. The probability of. detection Qd is plotted as the solid

curves in Figs. 3 and 4 as a function of the mean number N of received
s

photons for various values of the mean number NO of background photons

in an area 2~ ~2 concentric ~ith the Gaussian image. In Fig. 5 is

plotted the average probability P of err0r dS calculated from (9) for
e

the ideal detector when used in a binary communication system; s 1
2

and go = N •
s

4. The Threshold Detector

The structure of the optimum detector depends on the signal-to­

noise ratio D
2

, and if D
2

is unknown, the detector must be designed for

bl t d d 1 Wh D2. 11 h . dsome reasona e s an ar va ue. en 1S very sma ,t e opt1mum e-

tector is nearly equipollent to the threshold detector, [15] which is

based on the t~rm of lowest order in an expansion of the logarithm of

the likelihood ratio in powers of D2 . For detecting an image on a

photoelectric surface, the equivalent threshold statistic is[l]

L
i

n. m(x.),
1 -1

-18-
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which is compared with a decision level geo' hypothesis HI being chosen

when ge > geo. Its probability distributions under the two hypotheses

can be determined from the m.g.f. 's

= exp!- fHO(ii) [1 + n
2
m(l\)]k 11 - exp [-sm(l\)]ld

2
l\j

I

k = 0, 1 , (49)

which for our Gaussian image in (37) becomes

h (e) (s)
k

exp !-N
O
f~l + n2

y)k(1 - e -sY)y-ldyl
o

= exp !-NO[C + R.n s - Ei(-s) + kD
2

(s - 1 + e-s)s-1] j.

k = 0, 1, (50)

-(rn+1) js [m!-r(m+l,s)]

(51)

where Ei(x) is the exponential integral and C = 0.577215 ... is Euler's

constant. The derivatives needed for the asymptotic expansion resulting

from the saddlepoint method can be written down in closed form,

dm[1n ~a)(S)J/dSm-= (_l)m Nof1ym-1 e-sY(l + n2y)k dy

o

= (_l)m NO ! s-m[ (m-1) ! -r (m,s)] + kD2

-19-



in terms of the incomplete gamma-function

~J.
m - 1

r(m 7 x) m-l -t
dt (m-l)! -x L r/ ' (52)t e = e x r .•

r = 0
x

The decision level geo' which is independent of the signal-to­

noise ratio, can be determined as described in Section 3, after which

the detection probabilities are calculated by the asymptotic .series derived

from (41) and (42), into which hie)(s) from (50) is substituted. The

results are plotted as dashed curves on Figs. 3 and 4 for NO = 0.5 and

NO = 5. They approach the detection-probability curves for the ideal

photoelectric detector in an osculatory manner.

If the image detector is to be used in a binary communication

system, the decision level minimizing the average probability of error Pe

must be found from the likelihood ratio

s/(l - s),

and this requires finding the p.d.f. 's of ge by inverse Laplace trans­

formation of (50), after which the minimum value of P is determined
e

from (9). We have not carried through this calculation.

5. The Simple Counter

The simplest way to detect the image is to count all the photo-

electrons emitted from a finite region of the image plane that is concentric

with the expected image il~uminance J (x). The total number n ofs ~

-20-



photoelectrons is then the datum on which the choice between hypotheses

HO and HI is based. It will have a Poisson distribution with different

mean values under· the two hypotheses, and in order to attain a pre-

assigned false-alarm probability, randomization will in general be

necessary. [16]

Applying this scheme to detecting the Gaussian image given by (37),

we assume that we count all the photoelectrons emitted from a circle of

radius PL centered at the origin. Under hypothesis H
O

the mean number

of counts is

(53)

where NO is given by (38). Under HI the mean number is

~(nIHl) • n1 •~~ Ml(~)d2~
ItS I<PL

N [1:. 2 + D2 (1o 2 P

2
-P /2 ]e ),

(54)

2
where D = Ns/NO is the signal-to-noise ratio. The detector chooses

hypothesis HI whenever the number n of counts exceeds an integer e; H
O

is chosen when n < e; but when n = e, HI is chosen with probability f.

The false-alarm and detection probabilities are then

[fnoeIe!

00

non/n!] ,QO = exp(-n ) + ~0
n = e + 1

[fnle/e!
00

nl n In!] •Qd = exp(-n
l

) +
~

(55)

n = e + 1
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In Figs. 3 and 4 the probability of detection so calculated is plotted

versus the mean number N of photoelectrons ejected by the Gaussian
s

image, for Q = 10-3 and 10-5 • For each point on the curve the valueo
of p was varied to yield maximum detection probability. The maxima are

quite flat, and the radius p~ of the counting area is not critical. The

values of p used are listed in Table I.

When the average error probability in (9) is to be minimum, the

likelihood ratio A(n) formed from the number n must be compared with the

decision level A
O

= ~/(1 - ~), and hypothesis H1 is chosen when A(n) > AO·

Thus the image sought is declared present whenever

otherwise hypothesis HO is chosen. The average probability of error as

given by (9) can then be calculated by summing Poisson probabilities, and

1
it has been plotted as the dashed curves in Fig. 5 at ~ = 2. For each

point on the curve the value of p was chosen to yield minimum error

prob qbi1ity.

6. Conclusions

From Figs. 3, 4, and 5 we see that the ideal photoelectric detector

and the threshold detector, which utilize information about the shape of

the image J (x,v), are hardly better than the simple counter when thes ~

effective area of this is selected to yield maximum detection probability

Qd or minimum error probab~lity Pe • If the image has a uniform distribution

-22-



over a finite 'area II of the image plane, outside of which it vanishes,

all three detectors are basically identical. Because the ideal photo­

electric detector is nearly equivalent to the optimum detector of an

incoherently radiating object in the presence of thermal background

light when it has unit quantum efficiency and diffraction is insignificant,

there is little one can do to improve the simple counter except to

increase its quantum efficiency; registering the points of emission of

the photoelectrons does not help much to increase the reliability of

detecting an image.
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TABLE I

Optimum Radius for Simple Counter

NO = 0.5

-3 -5N p(QO = 10 ) p(QO = 10 )s

1 1.31 1.37

2 1.72 1.68

4 1.72 1.68

8 2.10 1.68

12 2.10 1.98

20 2.10 1.98

24 2.46 2.28

N = S0

N -3 -S
s p(QO = 10 ) p(QO = 10 )

1 1.36 1.37

2 1.44 1.44

4 1.60 1.58

8 1.60 1.58

12 1. 75 1.65

20 1.82 1. 78

24 1. 82 1. 78



FIGURE CAPTIONS

Fig. 1. False-alarm probability Qo and detection probability Qd as

a function of decision level go for ideal photoelectric

detector as calculated by the sadd1epoint, Gaussian, and

gamma approximations; = N
s

= 5.

Fig. 2. Progress of the sadd1epoint So of the phase of the inte­

grand of (42) as a function of the signa1-to-noise ratio

2 -3 -5
D ; NO = 0.5 and 5, QO = 10 and 10 •

Fig. 3. Probability Qd of detection of a Gaussian image vs. the

mean number N of photoelectrons ejected by the image;s

QO
10-3• Curves are indexed by the' noise parameter

NO defined in (38).

Fig. 4. Probability Qd
of detection of a Gaussian image vs. the

mean number N of photoelectrons ejected by the image;s

QO
10-5 • Curves are indexed by the noise parameter

NO defined in (38).

Fig. 5. Average error probability P in deciding between presence
e .

and absence of Gaussian image when these have equal prior

probabilities, vs. mean number N of photoelectrons
s

ejected by the image. Curves are indexed by the noise

parameter NO defined in (38).
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probability Q
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Probability Q
d

of detection of a

Gaussian image vs. the mean number

N of photoelectrons ejected by
s -5

the image; Q
O

= 10 . Curves are

indexed by the noise parameter NO

defined in (38).
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Probability Qd of detection of a Gaussian
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